Stability of networked control systems with asynchronous renewal links: An impulsive systems approach
نویسندگان
چکیده
We consider networked control systems in which sensors, actuators, and controller transmit through asynchronous communication links, each introducing independent and identically distributed intervals between transmissions. We model these scenarios through impulsive systems with several reset maps triggered by independent renewal processes, i.e., the intervals between jumps associated with a given reset map are identically distributed and independent of the other jump intervals. For linear dynamic and reset maps, we establish that mean exponential stability is equivalent to the spectral radius of an integral operator being less than one. We also prove that the origin of a non-linear impulsive system is (locally) stable with probability one if its local linearization about the zero equilibrium is mean exponentially stable, which justifies the importance of studying the linear case. The applicability of the results is illustrated through an example using a linearized model of a batch-reactor. © 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Modelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method
Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...
متن کاملStochastic Impulsive Systems Driven by Renewal Processes
Abstract— Stochastic impulsive systems are defined by a diffusion process with jumps triggered by a renewal process, i.e., the intervals between jumps are independent and identically distributed. We construct a model for such systems based on jump-diffusion equations and provide Lyapunov-based conditions that guarantee their mean-square stability. As an application, we show that stochastic impu...
متن کاملAnalysis of Impulsive Renewal Systems: Application to Emulation in Networked Control
We analyze impulsive systems with independent and identically distributed intervals between jumps. Our approach is based on a Volterra renewal-type equation that allows us to characterize the transitory and asymptotic behavior of the system. Necessary and sufficient conditions are given for mean square stability, stochastic stability and mean exponential stability, and the relation between the ...
متن کاملDesign of Observer-based H∞ Controller for Robust Stabilization of Networked Systems Using Switched Lyapunov Functions
In this paper, H∞ controller is synthesized for networked systems subject to random transmission delays with known upper bound and different occurrence probabilities in the both of feedback (sensor to controller) and forward (controller to actuator) channels. A remote observer is employed to improve the performance of the system by computing non-delayed estimates of the sates. The closed-loop s...
متن کاملStability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations
In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Automatica
دوره 49 شماره
صفحات -
تاریخ انتشار 2013